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Rejecting outliers and estimating errors in
an orthogonal-regression framework

By LARRY S. SHAPIRO AND MICHAEL BRADY

Robotics Research Group, Department of Engineering Science,
Ozford University, Parks Road, Oxford OX1 3PJ, U.K.

Least squares minimization is by nature global and, hence, vulnerable to dis-
tortion by outliers. We present a novel technique to reject outliers from an m-
dimensional data set when the underlying model is a hyperplane (a line in two
dimensions, a plane in three dimensions). The technique has a sound statistical
basis and assumes that Gaussian noise corrupts the otherwise valid data. The
majority of alternative techniques available in the literature focus on ordinary
least squares, where a single variable is designated to be dependent on all others
— a model that is often unsuitable in practice. The method presented here op-
erates in the more general framework of orthogonal regression, and uses a new
regression diagnostic based on eigendecomposition. It subsumes the traditional
residuals scheme and, using matrix perturbation theory, provides an error model
for the solution once the contaminants have been removed.
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1. Introduction

The problem of outliers (unrepresentative or ‘rogue’ observations) plagues data
analysis techniques such as linear least squares regression in a wide variety of sci-
entific investigations. This problem is well known in the statistics literature (Bel-
sley et al. 1980; Cook & Weisberg 1982; Barnett & Lewis 1984; Hawkins 1980;
Hampel et al. 1986; Huber 1981; Rousseeuw & Leroy 1987; Weisberg 1985), and
arises when a given set of data actually comprises two subsets: a large dominant
subset (the main body of valid data) and a relatively small subset of ‘outliers’
(the contaminants). The task of removing the contaminants is further compli-
cated when, as is normally the case, the data in the dominant subset have also
been perturbed by noise. The outlier problem is important since an analysis based
both on the real data and the outliers distorts conclusions about the underlying
process (figure 1). It is therefore of interest to seek a means of effectively rejecting
such ‘maverick’ points, thereby restoring the propriety of the data and improving
parameter estimation.

We examine this problem in the context of hyperplane fitting. Let the points
{r;;i = 1,...,n} be given in R™ and let 7 be their centroid. Then the points
lie on an (m — 1)-dimensional hyperplane 7 of R™ if, and only if, there exists a
non-zero vector n € R™ such that

nt(r,—7)=0, i=1,...,n, (1.1)

where n is the normal to the hyperplane. This paper addresses the case where the
measurements r; are contaminated by Gaussian noise and there is, in addition, a
relatively small set of outliers. The aim is to identify and eliminate the outliers,
in order to estimate the hyperplane by least squares fitting to the remaining data.

One means of achieving this is to use regression diagnostics, which involves
calculating an initial fit to the data and then assessing the validity of each point
based on a computed residual or influence measure. Such schemes are well-suited
to our problem domain (see §6); unfortunately, the vast majority of existing di-
agnostics apply to ordinary least squares (OLS), which is inappropriate for our
purposes. The framework we require is orthogonal regression (OR), and the pri-
mary goal of this paper is to devise a suitable regression diagnostic. Our technique
applies to general problems involving hyperplane fitting and relaxes some of the
statistical assumptions imposed by many comparable schemes.

The paper is structured as follows. Section 2 introduces OLS and OR, and con-
trasts their relative strengths and weaknesses. Section 3 reviews existing solutions
to outlier rejection and § 4 presents our new approach. Once the outliers have been
rejected, it is important to know the remaining uncertainty in the fit (caused by
the inevitable noise): §5 derives the appropriate variance estimates and covari-
ance matrices for this purpose. Section6 applies our technique to a computer
vision problem and §7 concludes with directions for future research.
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Figure 1. Noise and outliers: (a) a least squares fit minimizes the distances of the
noise-perturbed data (circles) from the fitted line; (b) outliers (squares) distort the correct fit.

2. Linear regression

Regression is used to study relationships between measurable variables; linear
regression deals with a particular class of relationships, namely those that can
be described by straight lines or by their generalizations to many dimensions,
typically called ‘hyperplanes’. The objective here is to fit a hyperplane to a set
of m-dimensional points, for instance a line in two dimensions or a plane in three
dimensions.

Consider n data vectors in R™, denoted #; = (241, Zi2, - - - » L4m) |, which satisfy
the linear relation
The vector n = (ny,ny,...,n,) € R™ contains the parameters (or regression

coefficients) to be estimated, and equation (2.1) has the following geometric in-
terpretation:

(i) n is the direction of the normal to the (m — 1)-dimensional hyperplane,
with magnitude |n|;

(ii) |d|/|m| is the perpendicular distance from the hyperplane to the origin.
Equation (2.1) has m unknowns since only the ratios of ny :my : -+ :n,, : d can
be recovered; thus, m data points are usually sufficient to determine n and d (up
to an arbitrary scale factor). When more points are available (n > m), the system
is overdetermined, and because noise makes it unlikely that all n points will lie
precisely on the same hyperplane, an optimization problem arises. We initially
ignore outliers and assume that each data point is perturbed by a noise vector
or; € R™ to give the measurement 7;, where

T = 7 + 67y (2.2)

The perpendicular distance from 7; to the hyperplane 7 is then £; = (n"r; +
d)/|n|. Section?2a justifies the use of OR to determine 7 and §2b describes the
solution method.

(a) Choice of objective function
Harter (1974a) traces the method of OLS to Legendre & Gauss in the early nine-
teenth century (1805-1809). OLS computes the hyperplane 7 such that the sum of
squared distances from the points to 7 is minimized in a particular direction. Fig-
ure 2 a shows the familiar two-dimensional case where a line is fitted to minimize
the distances in the vertical direction (i.e. along the y-axis). The method of OR,

Phil. Trans. R. Soc. Lond. A (1995)
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410 L. S. Shapiro and M. Brady

Figure 2. Comparison between OLS and OR: (a) in OLS, the minimization direction is specified to
be the y-axis; (b) in OR, an intrinsic coordinate system (2, y’) is computed and the minimization
direction is automatically set to be the normal direction n.

also termed total least squares or principal component regression, was proposed
later by Adcock (1877, 1878), Kummel (1879) and Pearson (1901). OR minimizes
the sum of squared distances perpendicular to the fitted hyperplane, i.e. along
the direction of its normal n (figure 2b).

These approaches differ in two important ways. First, OLS requires the explicit
definition of axes and a minimization direction, i.e. an external coordinate system
is imposed on the data. In contrast, OR automatically computes an intrinsic
coordinate system on the basis of the least squares criterion (figure 2b), the new
axis variables being linear combinations of the originals. The OLS approach is
more appropriate in a range of applications, not least in the social and behavioural
sciences, where combinations of dissimilar variables (e.g. height and weight) yield
meaningless quantities. However, when (as in our case) the variables are spatial
coordinates, one coordinate system is as meaningful as any other, and the facility
to select a natural reference frame independent of the external coordinate system
is a distinct advantage of the OR method.

Second, the two methods make different assumptions about the error distri-
bution of the variables. OLS only accommodates errors along the minimization
axis (the dependent variable), and assumes that all remaining variables are inde-
pendent and known accurately. Thus, in figure 2 a, all x-components are treated
as noise-free, and all errors are ascribed to the y-components. The choice of de-
pendent variable affects the fit, as noted by Pearson (1901, p. 559): ‘we get one
straight line or plane if we treat some one variable as independent, and a quite dif-
ferent one if we treat another variable as the independent variable’. In contrast,
OR caters for errors in all coordinate directions and simply seeks a functional
relationship between the variables.

Thus, although the oLS formulae are simpler (and easier to solve), OR is gener-
ally better suited to the problem of hyperplane fitting, and the objective function
we minimize is the sum of the squared perpendicular distances

n

e(n,d) = iéf =Y (n"r;+d)?/|nl. (2.3)

=1

Least-squares fitting yields maximum-likelihood estimates of the parameters if
the measurement errors ér; are independent and follow a normal distribution
with zero mean and common variance. Alternative objective functions that one

Phil. Trans. R. Soc. Lond. A (1995)
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might minimize include (Berztiss 1964)

€g = Z |¢;] and ec= &I%J%IM (2.4)

=1

The Gerschgorin norm, £g, sums the absolute errors. It is less sensitive to outliers
than e, performing better for long-tailed error distributions (Narula & Wellington
1982). However, ¢ is difficult to minimize, since discontinuities in the derivatives
thwart general nonlinear equation solvers and function minimizers (Press et al.
1988); moreover, the solution is not guaranteed to be unique (Narula & Welling-
ton 1982; Harter 1974b). The Chebyshev (or minimax) norm, ¢, measures the
maximum error, and whereas € minimizes the average square error at the cost of
potentially large deviations at some points, e permits a larger average square
error and keeps the maximum deviation to a minimum. This approach is even
less robust than least squares (Rousseeuw & Leroy 1987) and ec is also hard to
minimize.

Thus, with its straightforward unique closed-form solution, ¢ remains the pre-
ferred cost function. Indeed, Weisberg (1985) remarks that least squares estima-
tion has been used for 180 years precisely because it is computationally simple,
geometrically elegant and optimal in several important respects (given some as-
sumptions).

(b) Orthogonal regression
We solve equation (2.3) for n and d by letting n be a unit vector (|n| = 1)
and minimizing
e(n,d) =Y (n'ri+d)> subject to |n]>=1. (2.5)

i=1
The resulting hyperplane passes through the centroid 7 (see appendix A), so
d=-n'"r. (2.6)

We therefore eliminate d by first centring the data points, writing v; = r; — 7:

n

e(n)=> (nTv)* = nT(iviviT>n =n' Wn. (2.7)

=1

The solution n is well known to be the unit eigenvector of W corresponding
to the smallest eigenvalue (appendix A). The eigenvalues of W are the m roots
of its characteristic polynomial p(A) = det(W — AI), where I is the m x m
identity matrix. These eigenvalues are denoted A(W) = {A,...,\,,} and ar-
ranged in non-decreasing order. If the corresponding normalized eigenvectors are
U, ..., Uy, then m = u;. Since W is real and symmetric, these eigenvectors can
form an orthonormal basis; furthermore, since W is also positive semi-definite
(v;” Wwu; > 0), the eigenvalues are all non-negative, i.e. 0 < Ay < -+ < A\p.

The matrix W, termed a scatter matrix, measures the dispersion of the data
about the means in each of the m variables (z1, xs, ..., Z,,). In statistics parlance,
we are performing principal component regression on the covariance matrix. (One
might also use a correlation matrix, where the data points are additionally nor-
malized in terms of variance; this is unnecessary when, as in our case, the variables
are comparable in magnitude of variance and units of measurement (Krazanowski
1988).) The algorithm is summarized as follows.

Phil. Trans. R. Soc. Lond. A (1995)
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Task 1. Given r; € R™ (i = 1,...,n), where n > m, compute n and d to
minimize

e(n,d) = Z(nTn +d)?,  where |n|=1.

i=1

Algorithm 1.

(i) Compute the data centroid 7 and centre the points, writing v; = r; — 7.

(ii) Construct the scatter matrix W =Y. vv,".

(iii) Find the unit eigenvector n corresponding to the minimum eigenvalue of
W (Wn = \n).

(iv) Calculate d = —n 7.

Geometry provides useful insight into how OR works. As mentioned earlier, OR
finds an optimal set of axes (an ‘intrinsic coordinate system’) to describe the data,
where ‘optimal’ refers to the best summarization of the data. The ‘best’ axis is
the line which the cloud of points is closest to in Euclidean space, i.e. the line
onto which the projections of the points have maximum variance (figure 3). For
instance, if all the points lie on a single line, that line is the most descriptive axis
and no further axes are needed. The second best-fitting axis (perpendicular to
the first) defines the best-fitting plane, the third best-fitting axis (perpendicular
to the first two) defines the best-fitting three-dimensional hyperplane, and so on
until all m dimensions have been explained. The new axes are the eigenvectors
and the variances of the projections onto these axes are the eigenvalues, specifying
the relative order of importance (or ‘explaining power’) of the various axes.

In fitting the best hyperplane, our interest lies in the axis with smallest eigen-
value, i.e. the axis onto which the projections of the data points have minimum
variance. These projections are the residuals of the fit, i.e. the residual for the
1th point is the projection of v; onto the unit axis u,

b = u,' v, (2.8)

which gives the perpendicular distance from v; to 7. The residuals would be zero
in the absence of noise, since the data set only has m — 1 independent dimensions.
The residual vector €= ({1,0s,...,¢,)" is defined as

¢ =uV, (2.9)
where V' = [v|vy]---|v,]. Note that eg and e¢ in equation (2.4) are simply
different norms of £ (Berztiss 1964), namely eq = ||€|; and ec = [|€]|~ (see

appendix B).

Although algorithm 1 caters for Gaussian noise in an optimal way, the problem
of outliers remains; least squares estimation is global and outliers distort the
solution. We address this problem in the sections that follow.

3. Previous work on outlier rejection

Two main approaches to the outlier problem have evolved in the form of re-
gression diagnostics (Belsley et al. 1980; Cook & Weisberg 1982; Barnett &
Lewis 1984; Hawkins 1980) and robust statistics (Hampel et al. 1986; Huber
1981; Rousseeuw & Leroy 1987). The diagnostic methods compute an initial fit
to the data, pinpoint outliers, reject them and then reanalyse the remaining data
(possibly in an iterative process). Thus, they simultaneously ‘build and criticize’
the model (Myers 1990). In contrast, the robust statistics methods first find a fit

Phil. Trans. R. Soc. Lond. A (1995)
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y second-best
(a) axis

best
axis
best
axis

Figure 3. Orthogonal regression: (a) the best axis passes closest to the points in terms of per-
pendicular distance, i.e. the projections of the points onto this axis have maximum variance; (b)
maximizing the projection of v onto uz (length ¢) is equivalent to minimizing the projection
onto u; (length £), since the distance h from v to the centroid O is fixed, and h? = ¢* + £2.

to explain the majority of the data without removing the contaminants. The out-
liers are then identified (if needed) as those points which are inconsistent with the
dominant fit. The robust approach is said to ‘accommodate’ the outliers. In some
applications, the two schemes yield identical results; in others, they differ signif-
icantly, and several papers have debated their relative merits and shortcomings
(see Rousseeuw & Leroy 1987).

(a) Regression diagnostics

The classical least squares approach to outlier rejection computes the initial fit,
determines the residual for each data point and rejects all points whose residuals
exceed a predetermined threshold (based, say, on a chosen confidence level and a
prior statistical-noise model). The procedure is then repeated with the reduced
set of points until all outliers have been removed. This approach works well when
the percentage of outliers is small and their deviations from the valid data are
not too large; unfortunately, a single outlier far removed from the data centroid
can strongly distort the fit, yet still have a very small residual.

A refinement of the above scheme uses influence measures to pinpoint potential
outliers. These measures assess the extent to which a particular point influences
the fit by determining the change in the solution when that point is omitted.
Examples include Cook’s D distance (Cook & Weisberg 1982; Weisberg 1985)
and the DFFITS/DFBETAS statistics (Belsley et al. 1980), which measure the
effect of point deletion on various regression parameters. Several such measures
were evaluated by Torr & Murray (1993a); unfortunately, all were designed for
the ordinary least squares formulation.

We therefore formulate our diagnostic directly in terms of the eigensolution.
Much of the previous work in this area revolves around principal component
regression (PCR), and the proposed solutions generally have an ad hoc intuitively
justified basis, with little sound statistical foundation (Barnett & Lewis 1984). In
general, a p-dimensional data point is transformed into a different p-dimensional
point (its principal component vector) by projecting the original data point onto
each of the p new principal component axes. Gnanadesikan & Kettenring (1972)
surveyed the field and suggested highlighting different types of outlier by using the
first few and last few principal component vectors of the data, the former being
sensitive to outliers inflating variances/covariances, and the latter to outliers
adding spurious dimensions to the data. They proposed no formal tests; instead,
they recommended graphical methods (such as bivariate plotting of the different
components) to elicit putative contaminants.

Phil. Trans. R. Soc. Lond. A (1995)
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Hawkins (1980) used two formal test statistics; however, his tests (like many
others) require the strong assumption that the data points are a random sample
from a multivariate normal distribution. When the underlying data distribution
is unknown (as in most cases, including our own), his theory only holds asymp-
totically as the number of points n — 00, so that the central-limit theorem can be
invoked (yielding an approximately normal distribution of principal components).
He pointed out that, in practice, this requirement on n can be prohibitively large.
He concluded that despite the appealing properties of tests involving principal
component residuals, they are not generally valid for formal testing with con-
trolled probability of type I error since the underlying (null) data distribution is
unknown for n of small to moderate size. (Type I errors occur when one incor-
rectly rejects a valid point as an outlier.) Chatfield & Collins (1980) concurred
that the available sampling theory for PCR is of limited use (even under the as-
sumption of multivariate normality), and went so far as to suggest that PCR be
viewed solely as ‘a mathematical technique with no underlying statistical model’.

We address these concerns in §4 e and illustrate how our particular formulation
(which uses only the minimum variance principal component) overcomes them
for our class of problem.

(b) Robust statistics

As mentioned in §2 a, alternatives to the least squares estimator can be found,
and concern for sensitivity to outliers spawned a search for ‘robust’ estimators
that would better tolerate the perturbations (Huber 1981; Rousseeuw & Leroy
1987). In this context, ‘robust’ means ‘insensitive to small departures from the
ideal assumptions for which the estimator was optimized’, often implying large
departures for a small number of points. One class of robust estimators is the
‘maximum-likelihood type’ or M-estimators (Huber 1981), which include the
least-absolute-deviation estimator.

Torr & Murray (1993b) suggested that robust estimators are appropriate when
the number of outliers is large or when the outliers possess structure. Their least
median-squares solution repeatedly sampled the universal set of data, computing
a statistic from each subset and averaging the results of many such ‘trials’ (via
robust statistical methods) to compute the dominant fit. The robustness of this
method stems from the fact that it only considers a subset of the universal data
set at any one time. Although this approach is reliable and applies equally to the
OLS and OR frameworks, it has a significant computational overhead. Moreover,
since in many cases (including our own) the outliers constitute a small percentage
of the data and their maximum deviation is bounded, the least squares methods
suffice.

4. Outlier rejection techniques

We examine two methods of identifying outliers. The first, a novel approach,
computes the improvement in the minimum eigenvalue of the scatter matrix W
when a data point is deleted. The second, the traditional residuals method, serves
as a benchmark to evaluate the performance of the first method. We show that
the residuals method is in fact subsumed by the minimum-eigenvalue method, the
results coinciding when a first-order perturbation model is used in the minimum-
eigenvalue scheme.

(a) The minimum-eigenvalue method

The intuition behind this approach is as follows. The minimum eigenvalue \; of
the scatter matrix W measures the total error in the fit; if this error is statistically

Phil. Trans. R. Soc. Lond. A (1995)
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Rejecting outliers and estimating errors in an OR framework 415

significant (i.e. partly due to outliers rather than pure random noise), then the
point whose removal most decreases the error is identified as an outlier, and
deleted. The parameters are then recomputed for the reduced set of points, and
the process continues until the termination criteria are satisfied. Section4a (i)
outlines the basic algorithm, and §4 a (ii) discusses ways to improve its efficiency.

(i) Basic algorithm

Consider the effect of deleting the ith data point. The data centroid changes
from 7 to 7*, and the points v; (j = 1...n,j # i) acquire new coordinates v}

The scatter matrix is modified from
W =3 (r;—7)(r;—7)"
j=1

(summed over n points) to

=157

(summed over n — 1 points). It is straightforward to show that the new quantities
are:

n n T

W* = W — n—ji(r — T)(Ti — T‘) =W — o 1’01' v, , (41)
=7 ! (r; —7) =T ! (4.2)
= () =T - .

N 1
’Uj = 'Uj + ;7/—__1"01' . (43)

The eigensolution also changes when W is perturbed to W*. We now identify
i as an appropriate statistical variable for assessing the improvement in the fit
when a point is deleted. By definition, Wu; = Ajuy, so

Alzu]TWulzf: (u v;)? = Z 2.
=1

Thus, \; equals the sum of the squared distances ¢? between the data points
and the fitted hyperplane 7. If the residuals ¢; are 1ndependent random variables
drawn from a zero-mean Gaussian distribution with variance o7, then \,/o?is
distributed as x? with (n — m) degrees of freedom (see, for instance, Porrlll et
al. 1986). Expressions for the variances and covariances of ¢; are derived in 8§50,
where it is shown that the assumption of a univariate distribution on ¢ is not
strictly true; the residual variances differ slightly from point to point, and ,are
also correlated. However we show these effects to be minor, and express o7 as
(n — 1)o? /n where o? is the variance of the zero-mean 1ndependent isotropic
Gaussian noise in the original points ;.

A one-tailed significance test can therefore be performed on \; /o7, correspond-
ing to the (null) hypothesis that 7r explains the data to a predetermmed confidence
level. If, for instance, A\ /o7 < X395 (95% confidence level), there are deemed to
be 1o outliers to the fit 0therw1se we delete that point Whose removal maximally
reduces A;, and decrement the degrees of freedom on the x? variable by one. A
new fit is then computed using the remaining data, and the data centroid and
scatter matrix are updated for the next iteration. This process continues until A

Phil. Trans. R. Soc. Lond. A (1995)
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416 L. S. Shapiro and M. Brady

falls within the specified confidence interval (indicating that no outliers remain),
or until a specified number of iterations/outliers has been reached (m is a lower
bound on the number of retained points).

Task 2. Givenr; eR™ (i=1...n, n > m) perturbed by zero-mean indepen-
dent isotropic Gaussian noise W1th variance o2, reject outliers from the set {r;}
to a (% confidence level.

Algorithm 2.

(i) Compute the data centroid r and centre the points, writing v; = r; — .
Construct the scatter matrix W =3, | v;v;

(ii) Find the eigenvector u, correspondmg to the minimum eigenvalue A, of

(iii) Perform a one-tailed x? significance test on A, /o}, with o} = (n—1)o?/n;
if the test falls within the (% confidence bound, set n = w, and goto step (vi).

(iv) For each point i, delete it from the data set and compute the new minimum
eigenvalue, \{(i). Hence determine the change in A; when point i is deleted,
namely AN (i) = Ay — ().

(v) Delete the point i for which AX,(7) is greatest. Update the scatter matrix
and centroid using equations (4.1) and (4.2), and return to step (ii).

(vi) Calculate d = —n " #. The final hyperplane parameters are {n,d}.

The full eigensolution is recomputed to determine the change in A; when point
i is removed, so to remove k outliers, k(2n — k + 1)/2 eigendecompositions (of
an m X m matrix) are required. Ways of reducing this computational cost are
discussed in §4 a (ii). We do not delete more than one outlier at a time since the
new fit may yield substantially different influence values for the remaining data.
While this might appear cautious, this caution is justified by the example in §4d.

(ii) Efficiency considerations

To determine the point with maximum influence, algorithm 2 recomputes the
full eigensolution for every point at each iteration. This is inefficient, and we
present two techniques to redress this problem. In both cases, complete eigen-
decomposition is required only at the beginning of the calculation and after the
deletion of each outlier. The removal of k outliers therefore involves only k + 1
eigendecompositions, substantially reducing the previous computational cost.

The first technique uses matrix-perturbation theory and the second uses an
exact eigenvalue identity; the latter is shown to be more suitable, and is thus
adopted for the remainder of this paper. Both methods express equation (4.1)
as W* = W + AW,, where AW, = —nv;v,' /(n — 1) corresponds to removal of
point i. Note that A W is a dyadic product and hence a real-symmetric matrix
of rank one.

Perturbation model. This approach uses matriz-perturbation theory (Golub &
van Loan 1989; Wilkinson 1965) to evaluate the change in A; induced by delet-
ing point ¢. Various worst-case bounds for eigenvalue perturbation exist in the
literature (e.g. Weyl theorem, Wielandt-Hoffman theorem), derived mainly from
Gerschgorin disk theory (Stewart & Sun 1990; Wilkinson 1965). These bounds
impose restrictions on the maximum variation of the eigenvalues; however, while
useful for devising numerical algorithms, their worth is limited by their conser-
vatism (Weng et al. 1989).

We use instead a Taylor series expansion to compute the first- and second-
order eigenvalue variations. Consider a perturbation that is proportional to € in
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the scatter matrix, and let A;(e) denote the dependence of the least eigenvalue
on €, where \; = A;(0) and

Ar(€) = Ai(0) + Ai(0)e + 13, (0)€® + O(€®).

The quantity € is the two-norm of A W, defined formally in appendix B, where
it is also shown that the first- and second-order perturbation terms in A; due to
deleting point ¢ are

(u) v;)?, (4.4)
1,00 = - (w2 3 ) (4.5)

This scheme is incorporated into algorithm 2 by replacing step (iv) as follows:

Step (iv). For every point i, compute the perturbation in A\; (up to second
order) when that point is deleted, namely

2

AN (i) = (72-—1-)-2-(1;;1;2)2 [n; 1 + é %%]

Once it has been decided which point to remove, the accurate eigensolution
is computed to prevent errors accumulating over time. Thus, while perturbation
theory is used to speed up the search for the outlier, the solution is calculated
accurately once the point is actually removed.

Unfortunately, the use of this approximation may sometimes identify an outlier
incorrectly, though improvements can be made to the above algorithm to reduce
the chance of this occurring. For instance, one could use higher-order pertur-
bations, or compute the accurate solutions for several of the points with large
perturbations (ensuring that the worst offender is pinpointed correctly). A better
approach is to use the eigenvalue identity described in the following subsection,
which computes the new eigenvalues precisely. Indeed, the main value of the above
perturbation analysis is the insight it provides into the operation of the outlier
rejection method (elegantly demonstrating in §4 ¢ how the minimum eigenvalue
and residual methods are related), and the tractability of the noise analysis it
facilitates in § 5.

Figenvalue identity. Let D be an m X m non-singular matrix and let D —cvv '
be singular, where c is a non-zero scalar and v is a non-zero m-vector. Then the
vector Do lies in the null space of the singular matrix. (The proof is simple:
a non-zero vector e lying in this null space satisfies (D — cvv')e = 0, giving
e = c(e"v)D v, which is parallel to D~'v.) Thus, if \* is an eigenvalue of
D — cov" with associated eigenvector u*, then (D — \*I — cvv')u* = 0 and
the eigenvector has direction (D — A\*I)~'v. The eigenvalue therefore satisfies the
relation

(D-XT—-cov")(D-XNI)"v=v—cvov'(D-XI)"v=0,
yielding the identity (Golub 1973)
cv'(D - X1y =1.
In the notation of equation (4.1), we have D = W, v = v; and ¢ =n/(n—1), so
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A* is an eigenvalue of W* if
—1
o (W — X\ I) "ty = 2 —. (4.6)

Now the eigensolution for W is known to be Wuy, = Ay w;,, where

W = i)\kuku; and I = iuku;

k=1 k=1
Thus,

W —X\I= Z()"“ —X)ww, and (W — XTI Z kuk
k=

k=1
Equation (4.6) therefore reduces to

" o(u )2 n—1
> :E\ : /2 = : (4.7)
k=1 "'k T n

This equation has one root A\* such that A* < A, if w, v; is non-zero. (If
u, v; = 0, then {\;, u,} is an eigensolution of both W and W*.) This suggests
an efficient way to check whether deleting point ¢ causes a bigger change in
A; than deleting one of the other points that have already been examined. Let
A} be the smallest of the minimum eigenvalues calculated so far, that is A} =
min{A}(1), A\1(2),...,A}(¢ — 1)}. Then the minimum eigenvalue for point i, Aj(4),
will be smaller than A} if

i u, v;)? n -1

b1 /\k - )\* n ’
in which case point ¢ becomes the one favoured for deletion. The true value of
A3 (7) can then be computed to high accuracy, because on average this will only be

done on relatively few occasions. The modification to step (iv) of the algorithm
is given below.

Step (iv). Delete point 1 from the data set, compute the new minimum eigen-
value \j(1), and set A\] = A(1). For each remaining point i, where i = 2,...,n,

, (wg v;)> _ n—1
f
1 Z)\k_ﬁ> n

(a) delete point i from the data set and compute the new minimum eigenvalue
A1(1), and
(b) set AT = Aj(7) and AN (i) = Ay — Aj(3).

Importantly, computing this true value A3 () does not require eigendecompo-
sition; it can be done using a modified Newton-Raphson procedure on equa-
tion (4.7). Indeed, for large n, the work of such a method would be less than the
work of generatmg all the scalar products u, v;, which will have been performed
already. Thus, as in the perturbation method above, only one complete eigende-
composition is needed for the deletion of each outlier; however, the eigenvalue-
identity method has the advantage of computing the eract value of \;, not just
an approximation to it.
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(b) Method of residuals

We now turn to the second method of 1dent1fy1ng outliers, namely the method of
residuals. Recall equation (2.9), ' = u;” V, where £ = (4, 62, .oy ) 7. Clearly, ¢;
is a linear combination of random Gaussmn variables and is thus 1tself a Gau531an
variable, with E{{;} = 0 and Var{¢;} = o} (o, is derived in §5b). The elements
of £ thus form a Gaussian distribution, and standard statistical tests can be
performed on them to identify outliers. Since the residuals can be positive or
negative (‘behind’ or ‘in front of’ the hyperplane), a two-tailed test is needed, such
as —1.96 < {; /o, < 1.96 for a 95% confidence level. The algorithm is summarlzed
as follows

Task 3. Givenr, e R™ (i =1,. > m), with m perturbed by zero-mean
independent isotropic Gaussian no1se havmg variance o, reject outliers from the
set {r;} to a (% confidence level.

Algorithm 3.

(i) Compute the data centroid # and centre the points, writing v; = r; — 7.
Construct the scatter matrix W = Y1 v;v,".

(ii) Find the eigenvector wu, corresponding to the minimum eigenvalue \; of
W, and compute the residual vector £ = u, V.

(iii) Find the maximum residual .« = maXigi<n |¢i|, and perform a two-
tailed Gaussian significance test on {,x/0,. If this is within acceptable limits,
set n = u; and goto step (v).

(iv) Delete the point with maximum residual. Update the scatter matrix and
centroid according to equat1ons (4.1) and (4.2), and return to step (ii).

(v) Calculate d = —n" 7. The final hyperplane parameters are {n,d}.

(¢) Comparison between methods
The two outlier rejection schemes in §4a and §4b share many similarities,
and the following analogy can be made. Consider n samples {t1,,,...,t,} drawn
from a univariate population with mean ¢ and variance o?. The statistic

(t1—t_)2+(t2—t_)2+...+(tn__t—)2

o}

T2 =

has a x? distribution if the underlying population is Gaussian. Then (t; —1)/o, is
the ‘residual’ (individual distance) and T is the ‘eigenvalue’ (sum of the squared
distances). A large residual causes a corresponding increase in the eigenvalue, and
the reliability of both schemes hinges on the validity of the Gaussian distribution
assumption and the assumed value of o;. The difference is that whereas the
residual scheme simply rejects the point that deviates'most from the current fit,
the influence function rejects the point whose exclusion will result in the best
fit on the mext iteration. Put differently, the residual scheme looks only at the
existing fit to identify the ‘villain’, while the influence fit ‘looks ahead’ to the
next fit to see what improvements will actually materialize.

The two schemes often agree on which point to discard, though this is not true
in general. To see why, recall from equations (4.4) and (4.5) that the first- and
second-order approximations to A\; following the removal of point i are

. n " n Uy, v;
A(0)e = — (u,'v;)* and %/\1(0)62 = —m(uf%y Z E\kk_ A

n—1
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20
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-5 4 4 ~ -
i
(b) 3
25

Figure 4. Data lying on the line 3.8z + 12.2y + 9.6 = 0 (crosses) with a single outlier (square):
(a) the correct fit; (b) the OR fit affected by the outlier (point 3). The triangle shows the centroid
of the data set. -

while the residual for point 7 is (2.8)
Zz‘ == u;—’vi.

Evidently, there is agreement at the first-order approrimation, since A\, is then
simply proportional to ¢2. In other words, the point with largest residual will also
be that point inducing maximum change in A, at a first-order expansion! The
residual method is therefore subsumed by the influence function method; the
results are identical if a first-order eigenvalue perturbation model is used. The
second- (and higher-) order terms start to account for the change in eigenvector
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Figure 5. Superior discrimination power of minimum eigenvalue method versus residual method:
point 3 is the outlier; (a) residual £? for each data point relative to the largest; (b) actual change
in minimum eigenvalue, A\;, for each data point relative to the largest.

structure (the ‘look-ahead effect’), so a different point might then have a larger
overall influence.

We demonstrate this by means of a simple two-dimensional example. Consider
the set of points in figure 4a. The dominant data (7 points) are noise-free and
lie on the straight line 3.8z + 12.2y + 9.6 = 0. There is a single contaminant
(point 3), and the OR fit to the full data set is shown in figure 4b. The outlier
has a significant detrimental effect, ‘pulling’ the line over towards point 3. The
residuals #; are listed in table 1, and it is clearly impossible to identify the outlier
correctly on the basis of these perpendicular distances. In fact, point 4 has a larger
residual than point 3! The minimum eigenvalue scheme offers a much clearer
distinction, discriminating between point 3 and point 4 by a factor greater than
two. This discrimination power is illustrated graphically in figure 5, where the
relative values of 7 are shown in (a) and those of A); in (b). We therefore only
consider the minimum eigenvalue method in the sections that follow.

Table 1 also lists the second-order eigenvalue perturbations to show that they
provide a fairly good approximation to the true changes in A;. The approxima-
tions are worse for points further from the centroid (e.g. points 3 and 6), but still
identify the most influential point correctly.
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Table 1. Data for the example in figure 4

(The eigenvalue scheme provides better discrimination between the outlier (point 3) and the
valid data than the residual scheme, which identifies the wrong point (point 4). The important
comparison is between £7 and the true change in A; (columns 3 and 4). The last column (column
5) gives the second-order approximation to AMj, which still identifies the outlier correctly.)

point residual (£;,£7) AM; (true, approx)

0 0.5337 0.2849 0.2911 0.2910
1 —0.1285 0.0165 0.0172 0.0172
2 0.3753 0.1409 0.1446 0.1445
3 —6.2510  39.0751 97.8422  64.6086
4 6.2607  39.1961 44.2979  43.8900
5 0.8231 0.6775 0.6877 0.6875
6 —4.7517  22.5791 34.7413  30.7303
7 3.1384 9.8497 9.9089 9.9090

(d) Ezperiments

Although our theory generalizes to any number of dimensions, the data used
in this section are two-dimensional, since higher-dimensional spaces are harder to
visualize (four-dimensional data are used in §6). Our first example illustrates the
facility of our algorithm to cope with multiple outliers, while the second illustrates
‘masking’.

Figure 6 shows the OR fit for 16 data points perturbed from the line —6.5z +
2.1y + 3.2 = 0 by Gaussian noise (¢ = 1). There are seven contaminants (points
1,3,4,5,9,17 and 21), and a 95% significance level is required for the x? test.
Table 2 gives the changes in minimum eigenvalue at each iteration, with the
largest change identifying the point to be deleted. The six iterations eliminate
contaminants 5, 21, 1, 3, 17 and 4 in order.

We make several observations. First, the procedure terminates automatically,
with the algorithm itself deciding (based on a statistical decision) when to stop
removing outliers. Errors still remain after the final iteration, but they fall within
acceptable levels, i.e. they are consistent with the assumed levels of noise. Sec-
ond, as predicted by theory, A\; decreases with the deletion of each point. Third,
a contaminant is sometimes sufficiently consistent with the underlying fit to be
indistinguishable from a valid noisy point; point 9 is not recognized as an outlier
since it lies in the centre of the data. This is not serious since the error introduced
by the outlier falls within the tolerable bound, so is not severely disruptive. In-
deed, a principal dilemma in outlier detection lies in deciding whether a potential
outlier is an extreme (but valid) perturbation of the dominant set, or a con-
taminant from another population. Such a decision is necessarily statistical and
guidance must be obtained from the application (e.g. in the form of prior knowl-
edge of o). Finally, we note that the outliers are confidently detected, despite
comprising a third of the data set. '

Our second example illustrates why only one point is deleted at a time. Figure 7
shows points displaced from their line —2.5z + 8y + 7.1 = 0 by Gaussian noise
(¢ = 1). Four outliers are added (points 5, 8, 17 and 19) and table 3 summarizes
the iterations for selected points. We observe that a poor initial fit can incorrectly
attribute influence to points which are actually correct; for instance, point 18
has a large influence in iteration 1 even though it isn’t an outlier. This influence

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A
/, A
4 N

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Rejecting outliers and estimating errors in an OR framework 423

Table 2. Table of data for the example in figure 6

(Each column refers to an iteration and gives the change in the smallest eigenvalue A; caused
by deleting each point. The largest change (underlined) determines which point to delete.)

point 1 2 3 4 5 6
0 5.8659 0.9802 0.0193 2.6291 0.3270 0.3791
1 228.4422  260.0809 291.4066 — — —
2 2.9063 1.4266 0.1850 0.0002 0.4895 0.7661
3 324.4088 293.1343 264.0601 236.4234 — —
4 21.4060 29.5761 39.6450 50.1246 39.7099 33.5104
5 375.3948 — — — — —
6 1.3932 0.3566 0.0342 0.4938 0.0003 0.0779
7 0.0059 0.2449 1.5407 2.4455 0.7764 0.6662
8 1.1019 0.2493 0.0753 0.5680 0.0019 0.0327
9 11.5642 6.8780 3.1768 1.0760 3.3019 5.3344
10 2.6872 0.5479 0.0214 1.0614 0.0443 0.1708
11 1.4537 0.1342 2.4536 10.2752 4.3754 0.6000
12 2.3191 0.0079 1.0828 6.3807 2.1837 0.0872
13 2.5193 0.0900 0.5740 4.3251 1.2076 0.0042
14 0.9171 0.1090 0.2154 1.0694 0.0924 0.0001
15 3.1934 0.7044 0.0044 1.0119 0.0280 0.2600
16 3.7753 1.5449 0.1829 0.0515 0.2761 0.8574
17 159.4227 134.3600 113.5430 92.5173 110.5653 —
18 1.6782 0.2114 0.1622 1.4740 0.1745 0.0182
19 7.4104 2.2989 0.2475 0.5377 0.0458 1.3712
20 1.9686 0.3277 0.0830 1.1962 0.0894 0.0617
21 306.1983  339.7714 — — — —
22 0.9484 0.1331 0.1800 0.9458 0.0612 0.0022

delete 5 21 1 3 17 4

A1 1019.4191  679.6477 388.2411 151.8177 41.2524 7.7420

decreases as the fit improves. It is also important to recompute fits after removing
points since outliers are sometimes ‘masked’ by other outliers. For instance, the
fact that point 19 is an outlier only becomes apparent in iteration 3, once outliers
17 and 8 have been removed.

(e) Discussion

Section 3 a mentioned some drawbacks of existing outlier tests for OR, and chief
among them was the often unrealistic requirement for a Gaussian null distribu-
tion. This requires that the data points r; occupy a Gaussian-like hyperellipsoid
about the centroid 7. In many applications (including our own), there is no justi-
fication for such an assumption, since the data r; are often not random variables
in the sense that they estimate a stationary mean. Instead, they may simply rep-
resent an arbitrary structure perturbed by noise, where the noise errors are the
fundamental random variables. In our case, for instance, fixed points are displaced
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Figure 6. Data points (crosses) originally lying on the line —6.5z + 2.1y + 3.2 = 0 (dashed) are
perturbed by Gaussian noise (0 = 1) and contaminants are added (squares). The OR fit (solid)
is affected by both contaminants and the noise. The centroid of the entire data set is also shown
(triangle).

from their hyperplane m by small noise vectors. The ‘small signal’ therefore intro-
duces randomness into the ‘large signal’, and the statistical assumptions should
therefore only be imposed on the noise, not on the distribution of features within
the hyperplane.

Since we have m-dimensional data with a single constraint, the first m — 1
eigenvectors explain the structure of the hyperplane (irrelevant from a noise view-
point), and the last eigenvector explains the noise; if there was no noise in the
system, A\; would be zero. By only focussing on this last dimension, we avoid im-
posing conditions on the distribution of the data itself. This contrasts with other
schemes (see, for example, Hawkins 1980; Gnanadesikan & Kettenring 1972) that
analyse the full set of principal components, and thus require knowledge of how
the data are distributed along all other axes.

5. Error analysis

Once the outliers have been removed, it is useful to relate the noise in the input
to the OR solution. Several researchers have recently stressed the advantages of
systematically studying the statistical-error behaviour of an algorithm (Weng et
al. 1989; Kanatani 1993). We additionally emphasize the importance of having
first removed the outliers, since their presence can severely distort such calcula-
tions, leading to serious bias or reduction in precision (Barnett & Lewis 1984).
Qualitatively, outliers tend to deflate correlations and inflate variances. Indeed,

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A
A
P 9

/\
'\

//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

\

A
A
[

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Rejecting outliers and estimating errors in an OR framework 425

y

225

18
~
~
%
-6
n
5
i
17
i
8

=20 -

Figure 7. Data points (crosses) originally lying on the line —2.5z 4+ 8y + 7.1 = 0 (dashed) are
perturbed by Gaussian noise (o = 1) and contaminants are added (squares). The OR fit (solid)
and data centroid (triangle) are shown.

Barnett and Lewis (1984, p. 249) mention in this regard that ‘even one or two
outliers in a large set can wreak havoc!’

In §5a, we perform a similar error analysis to that of Weng et al. (1989), and
in §5b we derive the variance and covariance expressions for the residuals. We
discover that this variance differs from point to point, and modify our previous
algorithm accordingly.

(a) Hyperplane covariance matriz

Let the data point #* be perturbed by independent isotropic additive Gaussian
noise ér, giving the measurement » = 7 + ér. It is assumed that each noise
perturbation has zero mean (E{ém;} = 0) with variance o2, i.e. E{r;} = E{#; +
67‘,'} = ';"i, Var{r,-} = Var{(?r,- and

I, = E{6r; 6r} = o’I. (5.1)

We further assume (as in Weng et al. 1989) that the data points have indepen-
dent errors, i.e. E{(Sr,'é'ro} = 6;;I'y, where §;; is the Kronecker delta product.
Our objective is to assess the eﬁjects of these errors on u; and, hence, obtain a
confidence estimate in the computed normal n.
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Table 3. Subset of the data table for figure 7

(Each column refers to an iteration and gives the decrease in minimum eigenvalue \; caused by
deleting each point.)

point 1 2 3 4
5 35.3568 46.2664 69.0109 —
57.6128 80.7649 — —
11 1.6243 0.4591 0.0631 1.0289
17 71.6464 — — —
18 47.8599 34.2896  14.7933 5.8793
19 12.0306 17.0934 27.0519 36.3879
delete 17 8 5 19

A1 201.4694 120.7046 51.6937 15.3057

Consider the centred data points v;. The noise in 7; induces an error dv; in v;:
v; :7'2—7"—'(’?'1—7%)-1-(57'2—6_7') :ffz—{—(?'vz
The covariance matrix for év differs from that of §7, because by centring the
data we confound the noise of the centroid with the noise of each individual
point. Noting that 67 = Y7, 6m;/n, we have
E{6v; 6v,} = E{(67; — 67) (67, — 67)"}
= E{ér, 67} — E{676r,} — E{67:;67 "} + E{6767 "}

1 1 1 -1
=0’ — —0’I — —0’I + = (no’I) = antpt) §
n n n n

and for ¢ # 7,
E{év; 6v;'} = E{(67; — é7) (6v; — 67)7}
= E{ér;6v] } — E{676r] } — E{67i67"} + E{6767 "}

1 1 1 1
=0 - —0'21 — —O'zIm + —2(77,0'21) = ——O'2I.
n n n n
The covariance matrix for v; is thus
2
-1
I, = E{6v; 6v, } = %—(n —npr=""-r, (5.2)
and for v; and v; (i # j) is
T —E{avévT}——"2I— Lr (5.3)
v — 10Uj - n - n L .

When n is large, the covariance matrices for the centred data v; tend towards
those for the uncentred data 7;, since (n — 1)/n — 1 and —1/n — 0. In matrix
form, V = [v|v,| -+ |v,] and 6 V = [6v,|6vs] - - - |6v,]. The perturbation caused
in the scatter matrix W = V'V T due to the noise in V is shown in the following
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equation:
=(V+6V)(V4+6V) =VV + VVT +6VVT +6VEVT.

We write W = W + §W and note that W = V V7. Then, using a first-order
approximation (Weng et al. 1989),

W= VEVT +6VVT. (5.4)

Finally we can consider the eigenvector . Since Wu] = )\ u] gives the noise-free
solution, )\1 = 0. Moreover, the noise-free residuals ¢; = u1 ¥; are zero, because all
points then lie on the hyperplane Since 6 W is a real symmetric matrlx, the first-
order change in 4, is (appendix B):

m o~ AT

Suy — _Z u,c 6Wu1) =—(Zukuk>6Wu1

i Ak

Now § Wiy = (VEVT +6V VT)ul V6§V iy since Vi, = 0 (the noise-free
residuals @, 9; equal 0), so du, can be written

o
k

§>

Suy =JVEV iy =J Y 9i(6v, @), where J=-Y — (5.5)
k=2

i=1 k

and the ‘hat’ indicates noise-free quantities. Finally, the covariance matrix for
u4; can be computed, giving a measure of confidence in the eigenvector solution
(proof in appendix Ca):

I, = E{6uw6u} = —0J. (5.6)

Many of the above equations require the true noise-free quantities (e.g. V', i,
J), which are not avajlable in general. Weng et al. (1989) pointed out that if one
writes, for instance, V = V —§V and substitutes this in the relevant equations,
the terms in 6 V' disappear in the first-order expressions, allowing V to be sim-
ply interchanged with V', and so on. The covariance matrix for u; can thus be
expressed in terms of directly measurable quantities:

_ 22 Uy (5.7)
k=2

(b) Residual variance and covariance
The residual is
U = b + 60, = (g + 6uy)T (s + 6v;) = iy ¥; + @1, 6v; + 0, Suy + Su, S,
where #; = 0. We neglect second-order terms and obtain an expression for the
perturbation:
80; ~ 4] 6v; + ;' Suy.
Thus, E{6¢;} = 0 and its variance o}, is
Var{6¢;} = E {(4, 6v; + 9, 6uy)?}
= E {(4) 6v:))" + (9, 6w)? + 2(9, 6w ) (1, 6v;)}
=4 Tyiy, + 9, Ty, 0; + 29, E{6u,6v,' }u,. (5.8)
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Figure 8. Computed residual variances o7; for the valid data points in figure 7: (a) the presence
of outliers tends to inflate the variance estimates, which reduce to the correct theoretical value
as more outliers are removed; (b) the variance falls off with increasing distance from the centroid
di = u; v; (measured along the fitted axis).

Appendix Cb shows that this reduces to

-1 m T )?
o2 = o [n _ Z (’Ul)\uk) ] (5.9)
k=2 k

n

The variance in the residual for point ¢ therefore consists of a constant term
o? = (n—1)o?/n, dependent on the variance of the raw data, and a variable term,
dependent on the specific location of v;. Evidently, no s1ngle variance applies to
all the residuals; the residual error distribution is different for every point. As a
rough guide, points further away from the data centroid have smaller residuals.
This is because the further a point is from the centre along a given axis, the
greater its potential influence in altering that axis. This is analogous to a lever,
where the moment caused by a constant force varies with the distance between
the pivot and the point of application.

To illustrate this, we return to the example in figure 7, where points 5, 8,
17 and 19 were 1dent1ﬁed as outliers using algorithm 2. Flgure 8 a graphs ‘the
residual variances o7; for the valid points at each iteration, illustrating that the
presence of outliers tends to inflate the computed variances. Figure 8 b plots the
final variances against the projected distances d; = (u, v;), showing that points
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Rejecting outliers and estimating errors in an OR framework 429

further from the centroid (measured along the axis u,) have smaller variances.
The relation is a simple quadratic in the two-dimensional case:

-1 &2
Ug¢=02 [nn —X’;]

This phenomenon of inhomogeneous residual variances (heteroscedasticity) is
termed ‘ballooning’ (Cook & Weisberg 1982; Barnett & Lewis 1984). It is a
common effect, arising even with a simple linear regression model (i.e. two-
dimensional case with a single regressor variable). It is inconvenient because if
the residuals all have different Gaussian distributions, there is no way to com-
pare them sensibly; a single x? test is invalid. This problem was ignored in the
algorithms of §4 a and §4 b, which assumed the residuals ¢; to be from a univari-
ate distribution. One solution is to compute the variance for each point and to
scale the residual appropriately (Barnett & Lewis 1984), thereby ensuring that
all residuals have unit standard deviation. The difficulty here is that the formula
for computing o, assumes that there are no outliers! When there are outliers,
the computed variances are distorted, rendering them useless.

We solve this problem by proceeding in two stages. First we note that o7 =
(n — 1)o?/n is the upper bound for o7; as points move further away from the
centroid, the variance decreases, and for these points the upper bound exceeds
the correct value. We therefore initially use o? as the common variance for all
points. The fact that we have overestimated the variance for some points errs
on the side of conservatism, since all valid points will then fall well inside the
allowed probability region — indeed, further inside this region than the specified
confidence level merits. Consequently, any points falling outside the limit are
certain to be contaminants.

Once the worst outliers have been removed, we refine the dividing line by
introducing the computed variances, assured that o, will not be too inaccurate.
Each residual is then scaled by its individual o, value, giving the new x? test
statistic

02
s=y -, (5.10)
iey Tt
where V is the current set of valid points, a subset of the initial data set with
some outliers removed. As before, the modified algorithm proceeds until the scaled
variances fall within specified probability limits, indicating that no further outliers
can be detected. Details of these algorithms, along with experimental results, are
given in Shapiro & Brady (1993).
Finally, we note that the residuals are not mutually independent; the covariance
between any two residuals 4; and ¢; is given by (appendix Cc¢):

1 m (v T
Cov{6t;,60,} = E{60,50,} = —o° [ﬁ +3 (v—u’“i—(i’ﬂ—@ . (5.11)
k=2 k

We have found empirically that this is a minor effect.

6. Computer vision application

We have encountered the outlier problem in the course of our computer vision
research into the structure from motion (SFM) problem, where our algorithms re-
quire hyperplane fitting (Shapiro 1993; Shapiro et al. 1994). This aspect of data
fitting is frequently either ignored in the vision literature or treated heuristi-
cally, adding further to the already considerable difficulty of devising algorithms
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430 L. S. Shapiro and M. Brady

that work reliably on real imagery. Indeed, much of the early SFM work (see,
for example, Ullman 1979; Longuet-Higgins 1981; Tsai & Huang 1984) ignored
both noise perturbations and outliers. There has subsequently been a trend to-
wards consideration of noise (Faugeras et al. 1987; Weng et al. 1989; Kanatani
1993), but the problem of outliers remains largely unexplored. Thus, although
many SFM algorithms now have partial immunity to noise (indeed some estimate
this noise (Weng et al. 1989; Kanatani 1993)), they generally lack immunity to
contaminants (a notable exception being Torr & Murray (1993a,b)).

The application we describe concerns the computation of the epipolar geom-
etry parameters for an affine camera. Section 6 a provides a brief background to
the problem and §6b gives results on real data, demonstrating the successful
operation of the outlier rejection scheme.

(a) Affine epipolar geometry

Suppose a three-dimensional scene point (X,Y,Z)" is observed in two images
as (z,y) " and (z’,3’)". We model the projection operation by means of an affine
camera (Mundy & Zisserman 1992), a generalization of the scaled orthographic
camera model. The affine camera preserves parallelism (parallel scene lines appear
as parallel lines in the image) and approximates the more accurate perspective
projection model well when the field of view is small and the variation of depth
of the scene along the camera’s line of sight is small compared with the average
scene depth. It is shown in Zisserman (1992) and Shapiro (1992) that (z,y)" is
then related to its counterpart (z’,3')" by the affine epipolar equation,

nix’ + oy’ + nsx + nyy +d = 0. (6.1)

The notion of an epipolar constraint is well known in the stereo and motion
literature, and specifies a line in each image (the ‘epipolar line’) on which the point
must lie, thereby reducing the search for ‘matching points’ from two dimensions to
one. When there are n > 4 correspondences (in the presence of noise), the points
do not lie exactly on the computed epipolar lines, and {n,d} is determined by
minimizing (Shapiro et al. 1994):

n

Z(nlx; + nayl + ngw; + nay; +d)?  subject to ni +nj +ni+nd =1,

=1

This is precisely equation (2.5) with m = 4.

(b) Ezperiments

We illustrate the outlier rejection scheme on some real image sequences. To
obtain the initial matches (2',y’,z,y), corner features are extracted from each
image using the Wang-Brady corner detector (Wang & Brady 1992) and tracked
over time (Shapiro et al. 1992). System noise arises from quantization error, corner
localization error and simplified camera model assumptions, and is estimated at
o = 0.7 pixels. Outliers arise mainly from mismatches in the correspondence
algorithm, failures in the segmentation algorithm (e.g. inclusion of a feature which
doesn’t belong to the object of interest), corners on extremal boundaries (e.g.
object silhouette) and false corners (e.g. the conjunction of edges at different
depths). A 95% confidence level is used throughout.

Figure 9a shows the first frame in a sequence taken from a camera moving
to the right in a static scene. The computed flow vectors (for 219 corners) are
shown in figure 9b, and while they certainly convey the motion with good quali-
tative accuracy, there are clearly outliers arising from the error sources discussed
earlier. The black left-hand edge of the image also provides an interesting test of
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(©) —
K_,_;-"
/ d 7
v
l -

Figure 9. Outlier rejection with a moving camera and static scene (camera moves right). Motion
vectors are shown double length for clarity: (a) first frame; (b) initial motion vectors; (c) rejected
motion vectors; (d) final motion vectors (outliers removed).

the algorithm’s performance. Figure 9 ¢ shows the 22 outliers identified by our
method, all of which were confirmed as incorrect matches (by manual inspection).
Figure 9d shows the final set of data. Not all the outliers have been removed,
but those that remain have a negligible effect on the fit. The minimum eigenvalue
was reduced from A\; = 370.13 to A\; = 42.94. A more intuitive error measure is
the sum of the squared perpendicular image distances from the points to their
respective epipolar lines:

n n

Mz, + nayl + nsz; + nay; + d)? 1Tl + Nyl + naw; + nay; + d
”:Z(lz 2Y; 3 4Y )+Z(1 2Y 3 4Y )

2
n? +n3 n3 +n32

=1

In our example, x is reduced from 1933.36 to 171.83, and the final fit therefore
has an average perpendicular distance of 0.66 pixels between each corner and its
epipolar line, a reasonable result given o = 0.7. Figure 10 shows two additional
examples, where the camera is stationary and an object moves in the scene.
This introduces an additional source of error, namely the segmentation of the
stationary background from the moving points (e.g. some motion of the shirt
is included with the head motion in figure 10b). The majority of outliers are
successfully rejected.

=1
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Figure 10. Outlier rejection with a static camera and moving object. Motion vectors are shown
double length for clarity: (a), (b) Initial motion vectors; (c), (d) Rejected motion vectors.

Although the technique evidently performs well when the outliers are ‘ran-
domly’ distributed, it is not designed to cope with ‘structured noise’. It is there-
fore unsuitable for segmenting independent motions in a scene, such as multiple
moving objects. This is because least squares estimation is severely distorted
by multiple populations. Larger-scale segmentation techniques must therefore be

\

< used first (see, for example, Torr & Murray 1994), and each object can then be
- handled in turn by our algorithm.

<

P

O : 7. Conclusion

R We have proposed a novel scheme for rejecting contaminants from a set of data
=i lying on an (m — 1)-dimensional hyperplane. The method operates in the Or
Eg framework and is based on the simple (yet powerful) principle of an influence

function. By assessing the change in the minimum eigenvalue of the scatter ma-
trix when a point is deleted, we can represent the total error in the fit without
needing to model how the data points themselves are distributed. The algorithm
termination is based on a statistical decision rather than prior knowledge of the
number of outliers present. We have also shown this minimum eigenvalue scheme
to subsume the more familiar method of residuals, and have investigated its error
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characteristics. The successful operation of the scheme has been demonstrated
on data from a real application.

One interesting direction for future study is the possibility of weighting the con-
tributions of the various data points based on their influence, downgrading those
which appear to be contaminants rather than simply rejecting them outright.

L.S.S. thanks Andrew Zisserman of the Robotics Research Group (RRG) for introducing him to
matrix perturbation theory and for insightful comments on early drafts of this paper. We had
valuable discussions with Brian Ripley and Matthew Eagle of the Oxford University Statistics
Department, as well as with Andrew Blake, Phil McLauchlan and Phil Torr of the RRG. We also
thank one of our anonymous referees for his many constructive comments and for pointing out
the Golub reference which led to equation (4.6). L.S.S. is supported by an Overseas Research
Students Award and by the Foundation for Research Development (RSA). M.B. thanks Nikki
Clack and Sara Morris for heroic defence against telephone marauders.

Appendix A. Orthogonal regression

The derivation given below is standard (see, for example, Porrill et al. 1986;
Murtagh & Heck 1987) and is repeated for completeness. The error function to
be minimized is given by equation (2.5),

=Y (n"r;+d)’ subject to |n|* =

i1
We express the constraint by means of a Lagrange multiplier u,
g(n,d)=ec—pn'n-1),
and solve by setting the partial derivatives of the Lagrangian to zero. First,
o¢’ = 1 &
—— =0= (2nTri +2d) = d=—— (nTTi) = —nTi'y

so the hyperplane passes through the data centroid #. Defining v; = r, — 7,
W =3, v;iv,) and substituting for d in € gives

gn)=> (n"v)’ —pun'n—1)=n"Wn —pu(n'n-1)
=1
o¢’

an—O'—2Wn—2/Ln = Wn = pun.

Evidently, n is a unit eigenvector of W corresponding to the eigenvalue u. To
decide which eigenvalue, we substitute back into e:

e=n'Wn=n"pun=yp.

Thus, for minimum e, g must be the minimum eigenvalue of W, and n its
associated eigenvector.

Appendix B. Matrix perturbation theory

Let A be an m X m matrix with eigenvalues A(4) = {A1,...,An}. The non-
zero m-vectors satisfying Au; = \ju; (j = 1,...,m) are the mght elgenvectors

(or simply the eigenvectors) of A, whlle those satlsfymg q; TA=)\; q] are the left
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eigenvectors. The p-norm of the vector z is
], = (J2 [P+ ez ]? + -+ 2, [P)V?, 1< p < oo,

0 the 2-norm is simply the Euclidean length |x|. The p-norm of A is

Az, ax || Az,
||| llzll,=1

| Al = sup
z#0

the p-norm of the longest vector obtained by applying A to a unit p-norm vector.
Importantly, [|A]|, is the square-root of the largest eigenvalue of ATA (Wilkin-
son 1965).

Consider the effect on the eigensolution when A is perturbed to A + AA. A
well-established body of theory describes the sensitivity of eigenvalues and eigen-
vectors to perturbations in matrix elements (see, for example, Golub & van Loan
1989; Wilkinson 1965). The relations for the general asymmetric case simplify
considerably when A is symmetric, since the left and right eigenvectors are then
equal (u; = g;). A further simplification applies in our case, where A = W and
AA =AW, = —nvv, /(n—1) (see §4), since AA then has unit rank and its
2-norm equals n|v;|?/(n — 1). In addition, A W; is semi-negative definite, so A,
will never increase when W is perturbed by A W;.

(a) Eigenvalue perturbation

Suppose A; is a simple (i.e. non-repeated) eigenvalue of A, and that the left
and right eigenvectors of A have unit 2-norm. If the perturbation A A4 equals ¢B,
where € is small and || B||s = 1, then it can be shown (Golub & van Loan 1989)
that in the neighbourhood of the origin there exist differentiable u;(€) and X, (e)
such that

(A+eB)u;(e) = Aj(e)u;(e), j=1,...,m.
Differentiating with respect to € (and setting € = 0 in the result) yields

Ade;(0) + Buy = A;(0)u; + A;(0)4(0),

where \;(0) = ); and \;(e) = A;(0) + A,(0)e + %.).\j(())'ez + O(€*). Premultiplying
by qu and simplifying gives (Golub & van Loan 1989; Wilkinson 1965)
T
. q; Buj
A;(0) = 21—,
J qJT u]
If A is symmetric (g; = u;),
/\](0) = UJTB’U,j,

and since in our case eB = AW, = —nv,v;' /(n — 1), the first-order change in \;
is

X(0)e = —— o (ufv), je{l..m}, ie{l..n}, (B1)
for the ith data vector and the jth eigenvector (corresponding to eigenvalue J;).
This varies between 0 (no perturbation) and —n|v;|?/(n—1) (maximum perturba-
tion). Evidently, the first-order change is always non-positive. The second-order
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Rejecting outliers and estimating errors in an OR framework 435
perturbation can be obtained in a similar fashion (Wilkinson 1965; Hinch 1991):
1 (g By;)(q Bu)

13.(0) =
2 J( ) quuj b1 ()‘j —/\k)ql;ruk
k#j
With A symmetric,
. " (u, Bu;)(u,; Buy,)
1X,(0) = LR ,
2 k};l Aj— Ak
k#j
and with eB = —nv;v;' /(n — 1), the second-order change in J; is
1y 2 n? )2 o~ (u v:)?
37 (0)€" = (”n-;—l— u ;) 22:1 )\] (B2)
k#j

This second-order variation is small when ); is well-separated from the other
eigenvalues.

(b) Eigenvector perturbation
The Taylor series expansion for the jth eigenvector is
u;(€) = u; + €i; (0) + O(€?),
and Golub & van Loan (1989) give

m T
. qu’U,j
u;(0) = E Uy,
5(0) Oy — M) @ we

showing that the sensitivity of the jth eigenvector depends both on eigenvalue
sensitivity and on the separation of ); from the other eigenvalues. Substituting
the expressions for A = W and eB = A W, gives

(u, v:) f: pye= S (B3)

Appendix C. Variance proofs

(a) Figenvector covariance matriz
We have from equation (5.6):

I, = E{6u,6u]} = E{J V6V aa sVV'J'}

_ jE{ ( 3 f)i(évf&l)> <Z i;jT((Svaal)> }SIT
=1 j=1
=J [Z b, ( > f;jTalTE{éviév]T}iq)] JT.

i=1 j=1
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Now
2 1 .
o (1 — —> I, i=3
E{év;6v} = 1 n
—0251, i 7.

and since @, #; = 1,

o? (1 — —) , 1=
’lAl;lTE{(S’UZ(S’U]T}’lALl = n

—021, 1 # 7.
n
Noting that >7_, 9; = 0, we obtain
n 2 n
S o7 E{6v,6v] Yy = 0®6] — % o =09,

j=1 j=1

giving

3

,(Z ulTE{éviéva}iLl) =2y o] =0’ W.

= =1 i=1

> =

ST a
Since W'u,]—)\uJ and @, @; = 0,5,
moa T
> )
k=2 )\k?
m A AT m { ~ AT m A
Uy, U Ayt Uy,
oL ) (L) =y
k=2 Ak i Ak

I, =0’ JWJj’ = 2(

Thus,
r, = —o?J.

Note that in § 4, we could not assume A; =~ 0 in the denominator terms (A, — A1)
because outliers were present. The approximation does hold once the contami-
nants are eliminated, since then A\ < A;.

(b) Residual variance
From equation (5.8), the variance of the residual for point 7 is

Var{6¢;} = @, Tyity + 9, Ty, ¥ + 20, B{6u,6v;" } iy

n—1 ,. . T A R - N
=— azulTIul—azviTJvi—k%iTE{ (Z ;(6v, i) )51);}“1

j=1
m A AT
n—1 5, 1. . U Uy N\
= o4, iy +02viT< E Lk )vi
n )\k

k=2

+2'vTJ<Z v, ITE{é'vjé'viT}'&l).
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Now @, %; = 1 and from apppendix Ca

n

Z i, E{6v;6v, }ay = 0>,

j=1
and thus
-1 ™ (o7 i
Var{66} = “—0* + >3 (& )" 2297 J b, (C1)
L k=2 )\k
1 m AT \2 mo AT A N2
_ 0.2 [n + Z (’vz Auk) _ 22 (vz AUk) ] (C 2)
n k=2 )‘k k=2 /\k

The final expression therefore simplifies to

Var{é(;} = o [— - Z /\1; _W)\l ]

For any point i, Yo, (%, @)%/, has a maximum value of (n — 1)/n and a
minimum value of 0. The variance thus has lower and upper bounds of 0 and
(n — 1)o?/n, respectively.

(¢) Residual covariance
We derive equation (5.11). The covariance between two residuals ¢; and ¢;

(i#7)is
Cov{64;,6¢;} = E{(4, 6v; + 9, ) (@, 6v; + i)Téul)}
= 4, E{6v;6v} }i + o E{6u, 6, }iy
+9, E{6w; v, }ay + 9, Ty, 95,
and, because the argument in appendix Ca can also provide the relation

E{6w,6v, i, = Jo2i;,

1 .
Cov{él;,6¢;} = ——0c* +o 'vTJ'vl+02 ST 0 — o2, T,

n
= —102 - az'i)jT i '&,i'&,;r ;.
n =2 Mk
The final form is therefore
1 (0, ) (v T'&
Cov{st:, 60,} = — [— iy @ ’“)]. (C3)
k=2 k?
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igure 9. Outlier rejection with a moving camera and static scene (camera moves right). Motion
actors are shown double length for clarity: (a) first frame; (b) initial motion vectors; (¢) rejected
otion vectors; (d) final motion vectors (outliers removed).
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(b)

igure 10. Outlier rejection with a static camera and moving object. Motion vectors are shown
double length for clarity: (a), (b) Initial motion vectors; (¢), (d) Rejected motion vectors.
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